Abstract

ABSTRACT Exceptionally large areas burned in 2014 in central Northwest Territories (Canada), leading members of the Tłı̨chǫ First Nation to characterize this year as ‘extreme’. Top-down climatic and bottom-up environmental drivers of fire behavior and areas burned in the boreal forest are relatively well understood, but not the drivers of extreme wildfire years (EWY). We investigated the temporal and spatial distributions of fire regime components (fire occurrence, size, cause, fire season length) on the Tłı̨chǫ territory from 1965 to 2019. We used BioSIM and data from weather stations to interpolate mean weather conditions, fuel moisture content and fire-weather indices for each fire season, and we described the environmental characteristics of burned areas. We identified and characterized EWY, i.e., years exceeding the 80th percentile of annual area burned for the study period. Temperature and fuel moisture were the main drivers of areas burned. Nine EWY occurred from 1965 to 2019, including 2014. Compared to non-EWY, EWY had significantly higher mean temperature (>14.7°C) and exceeded threshold values of Drought Code (>514), Initial Spread Index (>7), and Fire Weather Index (>19). Our results will help limit the effects of EWY on human safety, health and Indigenous livelihoods and lifestyles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call