Abstract

A failure model for die-cast magnesium alloys is formulated based upon a previously published critical strain model and the analysis of the stress concentration factor due to a spherical void. The failure model predicts the fracture strain during uniaxial tensile loading from the strain-hardening coefficient of the magnesium alloy and the area fraction of porosity due to a macropore in the microstructure. It was determined that this model predicts the fracture strain of 10 tensile samples with holes of different diameters drilled through the cross-section with reasonable accuracy. The predictions are further shown to agree with literature data for three magnesium-based casting alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.