Abstract

Convection during directional solidification can cause defects such as freckles and misoriented grains. To gain a better understanding of conditions associated with the onset of convective instabilities, flow was investigated using three-dimensional (3D) computational fluid dynamics simulations in an experimentally obtained dendritic network. A serial-sectioned, 3D data set of directionally solidified nickel-base superalloy measuring 2.3 × 2.3 × 1.5 mm was used to determine the permeability for flow parallel and normal to the solidification direction as a function of solid fraction ( f S ). Anisotropy of permeability varies significantly from 0.4 < f S < 0.6. High flow velocity channels exhibit spacings commensurate with primary dendrite arms at the base of the mushy zone but rapidly increase by a factor of three to four towards dendrite tips. Permeability is strongly dependent on interfacial surface area, which reaches a maximum at f S = 0.65. Results from the 3D simulation are also compared with empirical permeability models, and the microstructural origins of departures from these models are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.