Abstract

The objective of the present study is to include coating thickness non-uniformity in the development of a drug release model using coated ion-exchange pellets through the use of stochastic approaches. Drug release from ion-exchange resins was described using a Nernst–Plank model. Complexes of a model drug (dextromethorphan) and Dowex ® 50WX4-200 were prepared using a modified batch method and coated with Kollicoat ® SR 30D polymer. The deterministic model, validated using experimental drug release profiles for different coating thicknesses at 0%, 10%, 15%, 20% (w/w), was in agreement with the experimental data with a maximum root mean square error (RMSE) of 2.4%. An arbitrary Lagrangian–Eulerian approach was pursued to develop models of spherical pellets with non-uniform coating thicknesses. The Monte Carlo method was used to simulate the effect of the level of coating deformity on the cumulative drug release profile. Considering the co-existence of equal percentages of deformed and undeformed pellets in a batch, the cumulative release profile can vary by approximately ±6% as a result of coating non-uniformity. The release profile obtained for a model of an arbitrary pellet with an actual non-uniform coating profile was in good agreement with the average release profile for the models of the theoretical randomly deformed pellets. The developed mathematical model is a useful tool to evaluate and predict release profiles of polymer coated ion-exchange resin complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.