Abstract

Despite the importance of oxidation of blood-borne long-chain fatty acids (Fa) in the cardiomyocytes for contractile energy of the heart, the mechanisms underlying the transfer of Fa from the coronary plasma to the cardiomyocyte is still incompletely understood. To obtain detailed insight into this transfer process, we designed a novel model of Fa transfer dynamics from coronary plasma through the endothelial cells and interstitium to the cardiomyocyte, applying standard physicochemical principles on diffusion and on the chemical equilibrium of Fa binding to carrier proteins Cp, like albumin in plasma and interstitium and Fatty Acid-Binding Proteins within endothelium and cardiomyocytes. Applying these principles, the present model strongly suggests that in the heart, binding and release of Fa to and from Cp in the aqueous border zones on both sides of the cell membranes form the major hindrance to Fa transfer. Although often considered, the membrane itself appears not to be a significant hindrance to diffusion of Fa. Proteins, residing in the cellular membrane, may facilitate transfer of Fa between Cp and membrane. The model is suited to simulate multiple tracer dilution experiments performed on isolated rabbit hearts administrating albumin and Fa as tracer substances into the coronary arterial perfusion line. Using parameter values on myocardial ultrastructure and physicochemical properties of Fa and Cp as reported in literature, simulated washout curves appear to be similar to the experimentally determined ones. We conclude therefore that the model is realistic and, hence, can be considered as a useful tool to better understand Fa transfer by evaluation of experimentally determined tracer washout curves.

Highlights

  • The heart acts as a pump to supply oxygenized blood to all organs in the body

  • In accordance with the insights reported by Hamilton [45], using known physicochemical principles, we found that the most important hindrance to fatty acids (Fa) transfer should not be attributed to the phospholipid membranes, but to the boundary permeability (Fig 3), representing diffusion of free Fa through the thin aqueous boundary zone from the location of Fa release from carrier proteins (Cp) towards the surface of the phospholipid membrane, or vice versa

  • Endothelial cell interior, pericapillary interstitium and the cardiomyocyte interior were handled as compartments

Read more

Summary

Introduction

The heart acts as a pump to supply oxygenized blood to all organs in the body. The energy required for cyclic contraction and relaxation of the cardiac muscle cells (cardiomyocytes) is provided by oxidation of blood-borne substrates. Fa, supplied to the heart by coronary arterial blood, travel from the capillary lumen through the endothelial and interstitial compartments to the cardiomyocytes. As Fa are poorly soluble in water, carrier proteins (Cp), like albumin in blood plasma and interstitial fluid and Fatty Acid Binding Proteins (FABP) in the cytoplasm of endothelial and cardiac muscle cells, are required to guarantee sufficient supply of Fa to the cardiomyocyte interior [3]. Capillaries are considered to be the major site doi:10.1371/journal.pcbi.1004666.g001 of uptake of lipophilic substrates, like Fa. Near or at the luminal surface of the capillaries (cap), free Fa, detached from Cp, permeate the cap-ec membrane, cross the endothelial cell (ec) itself, the ec-is membrane to enter the pericapillary interstitial compartment (is1), and from there across the is1-myo membrane into the interior of the cardiomyocytes (myo), where Fa are metabolized. Bound to Cp, pass the venous compartment by convection while neglecting exchange with the tissue surrounding the coronary veins

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.