Abstract

We have investigated the modal behavior of two-dimensional (up to 400 elements) active-photonic-lattice-based antiguided vertical-cavity surface-emitting laser (VCSEL) arrays by both modeling and device characterization. A two-dimensional (2-D) model based on the effective index method has been constructed to analyze 2-D resonance and calculate array mode frequencies in rectangular geometry arrays. A more comprehensive three-dimensional bi-directional beam propagation code has also been developed to theoretically describe 2-D antiguided arrays with the VCSEL structure in the primary wave propagation direction. Gain spatial hole burning (GSHB) effects above laser threshold are applied to find conditions favorable for in-phase mode lasing and high intermodal discrimination. Three rectangular geometry array structures based on different interelement loss mechanisms have been designed and fabricated. Both far-field and spectral characterization were conducted on the devices to make detailed comparison with theoretical results. We found that introducing higher loss within the interelement region can allow the in-phase mode to exhibit the lowest threshold gain for a wide range of interelement widths around the in-phase resonance condition. A detailed spectral study of 5/spl times/5 arrays with the highest interelement loss design has demonstrated suppression of competing guided array modes and higher order leaky array modes at drive currents up to 10 times threshold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call