Abstract

The paper examines the elastic stability of pressed sheet metal flange of a box girder. Mathematical interpretation of elastic stability is performed on the model plate with two freely supported and two elastically restrained edges subjected to combined loads. The research is based on the energy analysis approach, using the principle of minimum deformation energy and the method of cross-sectional girder element decomposition. The plate elastic stability mechanism is investigated in an interactive environment that simulates local loads and compressive longitudinal forces produced by global stress. The significant geometric parameters, as well as support and load conditions affecting the loss of stability, are identified. The research results can be applied as a constraint on the local flange stability in the optimization of box girders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call