Abstract
SUMMARYThis paper presents a mortar-based finite element formulation for modelling earthquake cycles and wear on rough faults governed by rate and state friction. The method allows large sliding on the fault and accounts for all stages in the earthquake cycle, using a variable time step size with a transition between quasi-static and fully dynamic time discretizations. Wear laws with linear and power law forms are discretized and implemented into the mortar method, as well as a minimum level of normal traction constraint to treat fault opening. We examine the effect of wear laws on the slip behaviour and near-fault stresses during simulations of earthquake cycles on rough faults. The simulations demonstrate that the implementation of wear allows more realistic modelling of the earthquake cycle without the development of unrealistically large stresses and with less reduction of earthquake magnitude with total fault slip. Moreover, the method enables to study the effects of roughness and fault slip on the gouge zone thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.