Abstract
We propose a new model for dynamic volatilities and correlations of skewed and heavy-tailed data. Our model endows the Generalized Hyperbolic distribution with time-varying parameters driven by the score of the observation density function. The key novelty in our approach is the fact that the skewed and fat-tailed shape of the distribution directly affects the dynamic behavior of the time-varying parameters. It distinguishes our approach from familiar alternatives such as the generalized autoregressive conditional heteroskedasticity model and the dynamic conditional correlation model where distributional assumptions affect the likelihood but not the parameter dynamics. We present a modifi ed expectation-maximization algorithm to estimate the model. Simulated and empirical evidence shows that the model outperforms its close competitors if skewness and kurtosis are relevant features of the data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.