Abstract

Interactions between biological molecules in a cell are tightly coordinated and often highly dynamic. As a result of these varying signaling activities, changes in gene coexpression patterns could often be observed. The advancements in next‐generation sequencing technologies bring new statistical challenges for studying these dynamic changes of gene coexpression. In recent years, methods have been developed to examine genomic information from individual cells. Single‐cell RNA sequencing (scRNA‐seq) data are count‐based, and often exhibit characteristics such as overdispersion and zero inflation. To explore the dynamic dependence structure in scRNA‐seq data and other zero‐inflated count data, new approaches are needed. In this paper, we consider overdispersion and zero inflation in count outcomes and propose a ZEro‐inflated negative binomial dynamic COrrelation model (ZENCO). The observed count data are modeled as a mixture of two components: success amplifications and dropout events in ZENCO. A latent variable is incorporated into ZENCO to model the covariate‐dependent correlation structure. We conduct simulation studies to evaluate the performance of our proposed method and to compare it with existing approaches. We also illustrate the implementation of our proposed approach using scRNA‐seq data from a study of minimal residual disease in melanoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.