Abstract

The presently existing approach for describing dynamic emitter current-crowding in present compact models is only applicable to small-signal operation. Therefore, different options for modeling textbf fast nonlinear large-signal switching of bipolar transistors have been investigated. Such options include multi-transistor models and different versions of a two-transistor model as well as a single transistor with lateral charge partitioning across the DC internal base resistance. Compared to the results of 2D numerical device simulation of the internal transistor region under the emitter, a multi-transistor model with at least five segments and a single transistor model with lateral charge partitioning appear to be most accurate for describing the time dependent large-signal collector current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.