Abstract

Alkali ions are key to improving the performance of polycrystalline Cu(In,Ga)Se2 (CIGS) solar cells. Typically, a soda–lime glass substrate acts as an intrinsic source for many alkali ions. For these ions to reach the CIGS layer, diffusion through a metallic back contact is necessary. Typically deposited via sputtering, the morphology of this metallic back contact is dependent on multiple deposition parameters, including substrate temperature. By preparing films with varying deposition parameters, and utilizing both, multiple material characterizations (X-ray diffraction, scanning electron microscopy, and secondary ion mass spectrometry) and numerical modeling, we demonstrate here that effective paths of diffusion are just as important as diffusion rate for the alkali ions. As the substrate temperature increases, the mechanism that hinders the ability for alkali ions to diffuse switches effectively from diffusion rate to effective path of diffusion. It is shown that the lack of viable diffusion paths at substrate temperatures above 100 °C becomes the dominant factor for the transport of alkali ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.