Abstract
This paper presents an approach to modeling the depth-averaged velocity and bed shear stress in compound channels with emergent and submerged vegetation. The depth-averaged equation of vegetated compound channel flow is given by considering the drag force and the blockage effect of vegetation, based on the Shiono and Knight method (1991) [40]. The analytical solution to the transverse variation of depth-averaged velocity is presented, including the effects of bed friction, lateral momentum transfer, secondary flows and drag force due to vegetation. The model is then applied to compound channels with completely vegetated floodplains and with one-line vegetation along the floodplain edge. The modeled results agree well with the available experimental data, indicating that the proposed model is capable of accurately predicting the lateral distributions of depth-averaged velocity and bed shear stress in vegetated compound channels with secondary flows. The secondary flow parameter and dimensionless eddy viscosity are also discussed and analyzed. The study shows that the sign of the secondary flow parameter is determined by the rotational direction of secondary current cells and its value is dependent on the flow depth. In the application of the model, ignoring the secondary flow leads to a large computational error, especially in the non-vegetated main channel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.