Abstract

Lateral distributions of depth-averaged velocity in open compound channels with submerged vegetated floodplains are analyzed, based on an analytical solution to the depth-integrated Reynolds-Averaged Navier-Stokes equation with a term included to account for the effects of vegetation. The cases of open channels are: rectangular channel with submerged vegetated corner, and compound channel with submerged vegetated floodplain. The present paper proposes a method for predicting lateral distribution of the depth-averaged velocity with submerged vegetated floodplains. The method is based on a two-layer approach where flow above and through the vegetation layer is described separately. An experiment in compound channel with submerged vegetated floodplain is carried out for the present research. The analytical solutions of the three cases are compared with experimental data. The corresponding analytical depth-averaged velocity distributions show good agreement with the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.