Abstract

Heterocyst differentiation is a unique feature of nitrogen-fixing cyanobacteria, potentially important for photobiological hydrogen production. Despite the significant advances in genetic investigation on heterocyst differentiation, there were no quantitative culture-level models that describe the effects of cellular activities and cultivation conditions on the heterocyst differentiation. Such a model was developed in this study, incorporating photosynthetic growth of vegetative cells, heterocyst differentiation, self-shading effect on light penetration, and nitrogen fixation. The model parameters were determined by fitting experimental results from the growth of the heterocystous cyanobacterium Anabaena flos-aquae CCAP 1403/13f in media without and with different nitrate concentrations and under continuous illumination of white light at different light intensities (2, 5, 10, 17, 20 and 50 microE m-2 s-1). The model describes the experimental profiles well and gives reasonable predictions even for the transition of growth from that on external N source to that via nitrogen fixation, responding to the change in external N concentrations. The significance and implications of the best-fit values of the model parameters are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.