Abstract
Satellite measurements follow the growth and senescence of vegetation aid in monitoring crop development within and across growing seasons. For example, identifying when crops reach their peak growth stage or modeling the seasonal growing cycle is useful for agronomists and climatologists. In this paper, we analyze remote sensing data from an intensively cultivated agricultural region in the Midwest to provide new information about crop phenology. There is both a temporal and spatial dimension to the data as they are collected every 12 – 36 hours over regions approximately the size of a 45 km diameter circle. We represent the measurements using a functional data approach and account for spatial dependence between locations through the functional curve coefficients. Modeling across multiple growing years, and including growing degree days as a covariate, we estimate the timing for when crops reach their peak each season and make predictions at unobserved locations. Supplementary materials accompanying this paper appear online.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have