Abstract

The effect of the presence of a passivation layer on a metal rough surface during contact loading is investigated by means of dislocation dynamics simulations. The metal body is modeled as an FCC single crystal with a self-affine rough surface that is either bare, or covered by a thin coating, impenetrable to dislocations. This analysis permits to isolate the effect of surface roughening driven by dislocation motion: when the surface is bare the dislocations can glide out, leaving crystallographic steps at the surface that modify the local roughness; when the surface is passivated, dislocations are stopped by the interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call