Abstract

The plastic behavior of microscale lath martensite samples is highly anisotropic. Depending on the orientation, the deformation of such samples may be heterogeneous, with only a few localized slip traces, while the remainder of the sample remains largely elastic. Although several continuum plasticity models that account for the anisotropy exist, they cannot reproduce the heterogeneous response observed in experiments. In this study, a model for lath martensite at the microscale is proposed which captures the orientation-dependent heterogeneous behavior observed in experiments. Before formulating the model we first study in detail two idealized cases, in which two different deformation mechanisms are activated. In both cases, the lath martensite is modeled using a discrete slip plane model. In the model, the activation stress of the individual slip systems varies randomly in space according to a distribution based on the underlying dislocation motion. The two configurations differ only in the orientation of the applied tensile load relative to that of the laths — either perpendicular or at 45°. In the latter case, slip along the so-called habit plane results in localized plastic deformation, while the former results in a more diffuse activation of plasticity. Insights obtained based on the idealized cases are used to formulate a three-dimensional constitutive model which captures both deformation mechanisms. The model is applied to microtensile tests of single-packet lath martensite samples. It is shown that the orientation-dependent heterogeneity is accurately captured by the two deformation mechanisms accounted for by the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call