Abstract

Because of global climate change, it is necessary to add forest biomass estimation to national forest resource monitoring. The biomass equations developed for forest biomass estimation should be compatible with volume equations. Based on the tree volume and aboveground biomass data of Masson pine (Pinus massoniana Lamb.) in southern China, we constructed one-, two- and three-variable aboveground biomass equations and biomass conversion functions compatible with tree volume equations by using error-in-variable simultaneous equations. The prediction precision of aboveground biomass estimates from one variable equation exceeded 95%. The regressions of aboveground biomass equations were improved slightly when tree height and crown width were used together with diameter on breast height, although the contributions to regressions were statistically insignificant. For the biomass conversion function on one variable, the conversion factor decreased with increasing diameter, but for the conversion function on two variables, the conversion factor increased with increasing diameter but decreased with increasing tree height.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call