Abstract

Forest biomass estimation at large scale has become an important topic in the background of facing global climate change, and it is fundamental to develop individual tree biomass equations suitable for large-scale estimation. Based on the measured data of biomass components and stem volume from 100 sample trees of two larch species (Larix gmelinii and L. principis-rupprechtii) in northeastern and northern China, an integrated equation system including individual tree biomass equations, stem volume equation and height–diameter regression model were constructed using the dummy variable model and error-in-variable simultaneous equations. In the system, all the parameters of equations were estimated simultaneously, so that the aboveground biomass equation was compatible to stem volume equation and biomass conversion factor (BCF) function; the belowground biomass equation was compatible to root-to-shoot ratio (RSR) function; and stem wood, stem bark, branch and foliage biomass equations were additive to aboveground biomass equation. In addition, the system also ensured the compatibility between one- and two-variable models. The results showed that: (1) whether aboveground biomass equations or belowground biomass equations and stem volume equations, the estimates for larch in northeastern China were greater than those in northern China; (2) BCF of a larch tree decreased with the growing diameter while RSR increased with the growing diameter; (3) the proportion of stem wood biomass to aboveground biomass increased with the growing diameter while those of stem bark, branch, and foliage biomass decreased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call