Abstract

SummaryThe heart pumps blood into circulation against vascular resistance and actively regulates the contractile force to compensate for mechanical load changes. Our experimental data show that cardiomyocytes have a mechano-chemo-transduction (MCT) mechanism that increases intracellular transient to enhance contractility in response to increased mechanical load. This study advances the cardiac excitation- signaling-contraction (E-C) coupling model on conceptual and technical fronts. First, we developed analytical and computational models to perform 3-dimensional mechanical analysis of cardiomyocytes contracting in a viscoelastic medium under mechanical load. Next, we proposed an MCT feedback loop in the E-C coupling dynamic system to shift the feedforward paradigm of cardiac E-C coupling to an autoregulation model. Our combined modeling and experimental studies reveal that MCT enables autoregulation of E-C coupling and contractility in single cardiomyocytes, which underlies the heart’s intrinsic autoregulation in compensatory response to load changes in order to maintain the stroke volume and cardiac output.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call