Abstract
ABSTRACTIn this work, lanthanum phosphate with a 20% yttria (LaPO4/Y2O3) composite prepared by an Aqueous Sol–Gel process is machined using an Abrasive Water Jet Machine (AWJM). The machinability of this composite is studied by varying the input parameters namely Jet Pressure (JP), Stand-Off Distance (SOD), and Traverse Speed (TS) on Surface finish. Garnet of 80 mesh size is used as an abrasive with a flow rate of 85 g/min. The microstructural characterization study reveals the presence of new element YPO4. This element enhances the machinability and reduced porosity in the composite. Microscopy examinations on the machined surface reveals that partial overlapping at low JP, poor surface finish at high JP and SOD, forged deficiency at maximum SOD and TS. The minimum levels of all input parameters are influenced to obtain acceptable Ra. Atomic Force Microscopy (AFM) on the kerf surface shows micro wear track and peaks. The Multiple Regression Analysis (MRA) is developed for Ra to check the adequacy. From the Analysis of Variance (ANOVA), SOD has a significant effect on Ra with a contribution of 53%. The influence of JP and TS on Ra is found to be 31% and 15%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.