Abstract

In this paper, a metapopulation model is formulated as a system of ordinary differential equations to study the impact of vaccination on the spread of measles. The disease-free equilibrium is computed and proved to be locally and globally asymptotically stable if RC 1. We show that when there are no movements between the two patches, there exists at least one endemic equilibrium for all RCi >1 and bifurcation analysis of endemic equilibrium point proves that forward (supercritical) bifurcation occurs in each patch. Numerical simulation results are also presented to validate analytical results and to show the impact of vaccination on the incidence and prevalence of measles in a metapopulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.