Abstract

Mathematical air pollution modeling represents an essential tool to control and predict atmospheric pollution. In this paper, a multiple cell model for the three-dimensional simulation of pollutants (SO2, CO, NOx, and TH) dispersion from a network of industrial stacks is presented. The model verification was conducted by checking the simulation results for a single stack against experimental data and also against the predictions of the Gaussian Dispersion Model. Simulation runs were also conducted in actual scale in order to illustrate the program on a network of actual refinery stacks. The results are compared with measured data and also with the results obtained from the Industrial Source Complex (ISC) model, and good agreements were obtained. The effects of meteorological parameters (i.e., wind velocity, air temperature, atmospheric stability, and surface roughness) on pollutants dispersion were also investigated, and a sensitivity analysis study was carried out in order to determine the effect of atmo...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call