Abstract

The two-equation model in porous media can describe the local thermal non-equilibrium (LTNE) effects between fluid and solid at REV scale, with the temperature differences in a solid particle neglected. A multi-scale model has been proposed in this study. In the model, the temperature differences in a solid particle are considered by the coupling of the fluid energy equation at REV scale with the heat conduction equation of a solid particle at pore scale. The experiments were conducted to verify the model and numerical strategy. The multi-scale model is more suitable than the two-equation model to predict the LTNE effects in porous media with small thermal conductivity. The effects of particle diameter, mass flow rate, and solid material on the LTNE effects have been investigated numerically when cryogenic nitrogen flows through the porous bed with small thermal conductivity. The results indicate that the temperature difference between solid center and fluid has the same trend at different particle diameters and mass flow rates, while the time to reach the local thermal equilibrium is affected by solid diameter dramatically. The results also show that the temperature difference between solid center and surface is much greater than that between solid surface and fluid. The values of $$ \rho {\text{c}} $$ for different materials have important influence on the time to reach the local thermal equilibrium between solid and fluid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.