Abstract

We present a mathematical model and simulation method to compute the colonial dynamics of micro-swimmers that interact directly and through the fluid they are suspended in. The model uses the stress generated by each self-motile particle for long-range interactions and includes short-range steric effects between particles. The time-step computational cost is O(NlogN+M), with N the total number of mesh points, and M the number of swimmers. This fast method enables us to efficiently simulate many thousands of interacting self-propelling particles in three dimensions and with background flows. We show examples of collective behavior in suspensions of “pusher” and “puller” micro-swimmers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call