Abstract

In large-scale structural fire resistance tests, the interaction between the individual elements and the surrounding structure causes discrepancies in behaviour compared to single-element fire tests. Large-scale tests of real structures are challenging due to financial and time limitations. To bridge this gap, the concept of “Hybrid Fire Testing (HFT)” emerges, where a portion of the structural system (i.e., physical substructure) is experimentally tested while the remaining structure (i.e., numerical substructure) is analyzed numerically. The primary challenges in HFT involve ensuring stability throughout the analysis by considering the varying stiffness of the fire-exposed element during the test and establishing a versatile communication platform between the physical substructure (PS) and numerical substructure (NS) components. This paper presents a comprehensive HFT framework, implemented within a user-friendly software interface, facilitating both virtual and experimental testing. The software incorporates a new method addressing stability concerns by predicting PS stiffness during the test, achieving convergence within a limited number of iterations. Additionally, the framework includes a communication platform utilizing internet protocols (IP) and COM ports for rapid and easy connection to diverse experimental control systems and finite element software packages. The functionality of the developed software is validated through its successful application in an HFT conducted on a 3-story steel structure within a simulated environment. Both force-controlled and displacement-controlled approaches confirm the method’s adaptivity to the employed test procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.