Abstract
Extreme ultraviolet (EUV) lithography is the most promising candidate technique for the high-volume production of semiconductor devices with half-pitches of sub-10 nm. An anion-bound polymer, in which the anion part of onium salts is polymerized, has attracted much attention from the viewpoint of the control of acid diffusion. In this study, we modeled the acid generation processes in the anion-bound chemically amplified resists upon exposure to EUV radiation and developed a Monte Carlo simulation code. Using the developed simulation code, the dependence of the quantum efficiency of acid generation on the concentration of acid generator units was calculated. The calculated quantum efficiencies well agreed with the experimental values with a fitting error of less than 10%. The thermalization distance was considered to be approximately 3 nm. The blur of proton distribution intrinsic to the reaction mechanisms of anion-bound chemically amplified resists was roughly estimated to be 4.5–6.5 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.