Abstract

Change of land use land cover (LULC) has been known globally as an essential driver of environmental change. Assessment of LULC change is the most precise method to comprehend the past land use, types of changes to be estimated, the forces and developments behind the changes. The aim of the study was to assess the temporal and spatial LULC dynamics of the past and to predict the future using Landsat images and LCM (Land Change Modeler) by considering the drivers of LULC dynamics. The research was conducted in Nashe watershed (Ethiopia) which is the main tributary of the Upper Blue Nile basin. The total watershed area is 94,578 ha. The Landsat imagery from 2019, 2005, and 1990 was used for evaluating and predicting the spatiotemporal distributions of LULC changes. The future LULC image prediction has been generated depending on the historical trends of LULC changes for the years 2035 and 2050. LCM integrated in TerrSet Geospatial Monitoring and Modeling System assimilated with MLP and CA-Markov chain have been used for monitoring, assessment of change, and future projections. Markov chain was used to generate transition probability matrices between LULC classes and cellular automata were used to predict the LULC map. Validation of the predicted LULC map of 2019 was conducted successfully with the actual LULC map. The validation accuracy was determined using the Kappa statistics and agreement/disagreement marks. The results of the historical LULC depicted that forest land, grass land, and range land are the most affected types of land use. The agricultural land in 1990 was 41,587.21 ha which increased to 57,868.95 ha in 2019 with an average growth rate of 39.15%. The forest land, range land, and grass land declined annually with rates of 48.38%, 19.58%, and 26.23%, respectively. The predicted LULC map shows that the forest cover will further degrade from 16.94% in 2019 to 8.07% in 2050, while agricultural land would be expanded to 69,021.20 ha and 69,264.44 ha in 2035 and 2050 from 57,868.95 ha in 2019. The findings of this investigation indicate an expected rapid change in LULC for the coming years. Converting the forest area, range land, and grass land into other land uses, especially to agricultural land, is the main LULC change in the future. Measures should be implemented to achieve rational use of agricultural land and the forest conversion needs to be well managed.

Highlights

  • Land use land cover (LULC) change occurs under a variety of pressure and it is the result of changes or modifications in the intensity of an existing LULC type to determine the location and nature of the land use change

  • According to the authors of [61], LULC map accuracy is quantified by creating an error matrix or a confusion matrix, which compares the classified map with a reference classification map

  • The accuracy of this study shows that the result is within the range of accuracies, in which Land Change Modeler and Landsat images were used [55,63]

Read more

Summary

Introduction

Land use land cover (LULC) change occurs under a variety of pressure and it is the result of changes or modifications in the intensity of an existing LULC type to determine the location and nature of the land use change. The changes of LULC have been perceived as worldwide environmental change drivers in the watershed that are very sensitive to LULC dynamics [1]. A dynamic LULC offers an inclusive sympathetic of the interactions. At global and local levels, the changes of LULC are driven by anthropogenic and natural processes at different spatiotemporal levels. The LULC changes are dynamic, non-linear human–nature interactions that are significant land surface conversions and involve complex processes. The LULC change trajectory worldwide for the past 300 years has been categorized by gains in agriculture and losses in forests [3,4]. According to the authors of [5], LULC changes are associated with the change of forest land to agricultural expansion, urbanization, and deforestation

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call