Abstract

Thermal plasma has emerged as a technology with tremendous promise for municipal wastes that should be disposed of sustainably. A numerical simulation of a symmetric turbulent plasma jet from a thermal air plasma torch was developed using COMSOL Multiphysics®5.4 engineering simulation software. The velocities, temperature, arc root motion, and joule heating of the plasma jet were examined under the impact of the gas mass flow rate and current. Moreover, the electrical power required for the municipal solid waste (MSW) processing was estimated. The enthalpy and the effectiveness of the plasma torch were analyzed and discussed. Subsequently an investigation was conducted into the gasification characteristics of MSW using air and steam gases. The torch’s power and efficiency could be enhanced with a higher mass flow rate and temperature. Three operating modes were identified from the current–arc flow combination. Among the plasma gas considered, the air gas plasma torch guarantees an acceptable thermal efficiency and a low anode erosion rate. Plasma gasification produces cleaner syngas with higher efficiency (84%) than the conventional process due to the elevated temperature used during the process that breaks down all the char, dioxins, and tars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call