Abstract

ABSTRACT Due to the flexible motion characteristics, helical milling could achieve high surface quality and cutting stability. The effects of input parameters on specific cutting energy (SCE) during the medium density fiberboard (MDF) helical up-milling process were studied. Results of analysis of variance showed that the helical angle and depth of milling had extremely significant effects on SCE. SCE increased with increased helical angle, but decreased with increased milling depth. The impact of the rotation speed of the main shaft was non-significant. Due to the highest R2 value, a quadratic model was selected to establish the relationship between input parameters and SCE. The relative errors between predicting results and confirmatory test results were minimal, which meant that the model had high predicting accuracy. Under the selected input parameters, the optimized parameters were 54°, 5500 r/min, 1.5 mm for helical angle, the rotation speed of the main shaft, depth of milling, respectively. Although the arithmetic average of absolute roughness (Ra) and mean peak-to-valley height (Rz) increased about 58.3% and 46.2%, respectively, under the optimal milling parameters, the optimization was feasible at the initial rough machining stage. These results will be beneficial in guiding the selection of processing parameters to achieve reducing SCE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call