Abstract

Abstract The mechanical behavior of acrylonitrile butadiene copolymer (NBR)–organomodified layered silicate (nanoclay) was modeled using design of experiments approach. A Box–Behnken design with three factors and three levels was used to model the relationship between properties of NBR nanocomposites and the ingredients. The factors considered in the design were silica content, nanoclay loading, and dicumyl peroxide content. The nanocomposites were evaluated for tensile strength, modulus, elongation at break, oxygen permeation rate, and effect of oil and heat aging on mechanical properties. Regression equations were generated to model the properties of interest and generate response surfaces and contour plots. The predicted properties of the nanocomposites were in good agreement with the experimental results. The contour plots were overlaid within the applied constraints to identify the combination of factor ranges that gives the optimal performance of the nanocomposites for application as control system bladders in satellite launch vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.