Abstract

This paper extends a previously developed Pseudo Rigid Body (PRB) analytical model for miniature elastomeric joints by introducing correction factors for joints with geometry not previously considered. Inclusion of these correction factors has resulted in an increase in the accuracy of the model from 20% to within 3% in bending and from 25% to within 7% in tension, when compared to equivalent Finite Element Analysis (FEA) models. Additionally, using the PRB model, a robotic leg with four elastomeric joints has been modeled, resulting in a maximum error of 12% when compared to an equivalent FEA model. Finally, the PRB model was used to optimize the robotic leg for minimum motor torque required to drive a hexapedal robot with six identical legs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.