Abstract
A comprehensive numerical model is developed for the simulation of the laser-assisted automated tape placement process of carbon fiber/thermoplastic composites. After being heated with a laser, the thermoplastic is welded with the help of a consolidation roller onto a substrate made up of layers of tapes bonded onto one another. Under the pressure applied by the roller, the thermoplastic flows and the tape reaches its final thickness. The numerical model is developed in three sequential steps that can be used to identify the required pressure and temperature distribution to achieve a good bond. Firstly, a heat transfer simulation is performed to determine the temperature distribution into the incoming tape under the consolidation roller. Secondly, a rheological model is developed to examine the polymer flow under the roller and to obtain the pressure field. Finally, the consolidation level between the substrate and the tape is investigated through the degree of intimate contact, which is related to the processing parameters such as the roller velocity, the laser power density and the compaction force.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.