Abstract

In the frame of space missions, mechanisms often constitute critical systems whose functionality and performance need to be tested on ground before the mission launch. The LISA scientific space mission will detect gravitational waves by measuring the relative displacement of pairs of free-floating test masses set into geodesic motion onboard of three spacecrafts. Inside each satellite, the injection of the test masses from the caged configuration into the geodesic trajectory will be performed by the grabbing positioning and release mechanism. To provide a successful injection, the test masses must be dynamically released with a minimal residual velocity against adhesion with the holding device. A parameter that determines the test mass residual velocity is the quickness of the retraction of the holding device. The need arises then to characterize the dynamic response of the release mechanism in order to predict its behaviour in the in-flight conditions. Once a validated model of the mechanism is available, the compliance of the system to the tight requirement on the maximum allowed residual velocity of the test mass may be verified. Starting from an electro-mechanical model of the mechanism dynamics, this paper presents the results of the experimental identification of its relevant parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.