Abstract

A pneumatic cylinder system is believed to be extremely nonlinear and sensitive to nonlinearities, which makes it challenging to establish precise position control of the actuator. The current research is aimed at reducing the overshoot in the response of a double-acting pneumatic actuator, namely, the IPA positioning system’s reaction time. The pneumatic system was modeled using an autoregressive with exogenous input (ARX) model structure, and the control strategy was implemented using a fuzzy fractional order proportional integral derivative (fuzzy FOPID) employing the particle swarm optimization (PSO) algorithm. This approach was used to determine the optimal controller parameters. A comparison study has been conducted to prove the advantages of utilizing a PSO fuzzy FOPID controller over PSO fuzzy PID. The controller tuning algorithm was validated and tested using a pneumatic actuator system in both simulation and real environments. From the standpoint of time-domain performance metrics, such as rising time (tr), settling time (ts), and overshoot (OS%), the PSO fuzzy FOPID controller outperforms the PSO Fuzzy PID controller in terms of dynamic performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.