Abstract

Mechanisms for the nonreciprocal transmission of acoustic energy and the construction of non-reciprocal vibro-acoustic systems have been subjects of intense research in recent years. An experimental study of acoustic nonreciprocal transmission in an experimental system with a nonlinear membrane and two acoustic cavities of different sizes is reported. The membrane can be simplified into a Duffing oscillator, and the asymmetry of the frequency response function of this oscillator is used to realize the non-reciprocal transmission of acoustic energy. The asymptotic solution of the frequency response function of the nonlinear membrane is obtained by the complexification-averaging method. The theoretical simulation results accord well with the experimental results. The results show that the experimental system has a maximum non-reciprocal quantity of 9.1 times in theory, 4.3 times in the experiment, and the normalized frequency bandwidth of the jump phenomenon region is up to 0.56. The research results reveal the mechanism of non-reciprocal transfer of acoustic energy in the experimental system and demonstrate a new way to realize the asymmetric transfer of acoustic energy in an acoustic system with an air medium.

Highlights

  • L 1 L 2 V 1 V 2 R h S me mme m a f 1 f 0 me E k 1 k 3 q me v n c 0 a S.

  • 摘 要 声能量非互易传递机理及声非互易系统构建是近年来声学领域的研究热点。 本文开展了由非线性薄膜和两个不同尺寸声腔组成的实验系统中声能量非互易 传递的实验研究。该系统利用简化为Duffing振子的薄膜频响函数的不对称性, 实现了声能量的非互易传递。采用复化平均法获得系统频响函数的渐近解,理 论计算结果与实验测量结果吻合。理论计算和实验结果表明:该系统理论上存 在最大9.1倍的非互易量,实验测得的最大非互易量为4.3倍,归一化跳变区频率 带宽为0.56。研究结果揭示了实验系统中声能量非互易传递机理,为实现空气 介质声系统中声能量的非对称传递提供了一种新方法。 关键词:声非互易,单向传递,非线性薄膜振动,Duffing 振子 PACS:43.25.+y 43.40.+s

  • 通过在系统中引入具有非线性特性的元件[1,2],实现声能量的非互易传递[3,4], 是设计声二极管[5,6] 、声学斗篷[7,8]、声单向透镜[9,10]、隔声体和拓扑绝缘体[11,12,13,14,15,16] 等新型声学元件的基础,是近年来声学领域[17]的研究热点。

Read more

Summary

Introduction

L 1 L 2 V 1 V 2 R h S me mme m a f 1 f 0 me E k 1 k 3 q me v n c 0 a S. 摘 要 声能量非互易传递机理及声非互易系统构建是近年来声学领域的研究热点。 本文开展了由非线性薄膜和两个不同尺寸声腔组成的实验系统中声能量非互易 传递的实验研究。该系统利用简化为Duffing振子的薄膜频响函数的不对称性, 实现了声能量的非互易传递。采用复化平均法获得系统频响函数的渐近解,理 论计算结果与实验测量结果吻合。理论计算和实验结果表明:该系统理论上存 在最大9.1倍的非互易量,实验测得的最大非互易量为4.3倍,归一化跳变区频率 带宽为0.56。研究结果揭示了实验系统中声能量非互易传递机理,为实现空气 介质声系统中声能量的非对称传递提供了一种新方法。 关键词:声非互易,单向传递,非线性薄膜振动,Duffing 振子 PACS:43.25.+y 43.40.+s 通过在系统中引入具有非线性特性的元件[1,2],实现声能量的非互易传递[3,4], 是设计声二极管[5,6] 、声学斗篷[7,8]、声单向透镜[9,10]、隔声体和拓扑绝缘体[11,12,13,14,15,16] 等新型声学元件的基础,是近年来声学领域[17]的研究热点。 非线性声系统具有跳变、随系统能量变化的共振频率等线性系统不具有的 特性,因而可作为声能量非互易传递的控制元件。按系统非互易产生机理,可 分为高次谐波产生[18,19]、分岔[20,21]和非线性共振[22,23,24]三类非线性声非互易系统。 程建春、梁彬等人[18,19] 基于非线性介质产生高次谐波产生机理提出了声二极管, 实现了声能量的单向传递。Daraio[20,21]等人利用一维周期性颗粒链结构实现了 孤波的整流效应,构建了基于分岔的声整流器。Vakakis[22,23,24]等人利用非线性内 共振设计了一系列声非互易系统。2020年,汪越胜[25]基于双原子晶格链模型, 研究了非线性弹性波超材料的带隙特性和非互易传输特性。近年来,越来越多 关于非线性非互易动力系统最新研究成果得到发表。

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.