Abstract
This article develops a multi-stable hybrid energy harvester (MSHEH) which consists of a piezoelectric energy harvester (PEH) and an electromagnetic energy harvester (EMEH). By tuning two parameters, the MSHEH can achieve a mono-stable, bi-stable, and tri-stable state, respectively. A numerical procedure is developed to compute the EMEH’s transduction factor. The obtained result is validated experimentally. Using the equivalent magnetic 2-point dipole theory, the restoring force model of the magnetic spring is established. The obtained model is verified experimentally. The energy harvesting performances of the MSHEH under the four different configurations (linear, mono-stable, bi-stable and tri-stable) subjected to frequency sweep excitations are evaluated by simulation and validated by experiment. The comparative analysis focuses on power output, accumulated harvested energy, and effective energy-harvesting bandwidth. The optimum load resistances are investigated by Pareto front optimizations. The following key findings are obtained. When subjected to high-level frequency sweep excitation, the tri-stable configuration exhibits the widest frequency bandwidth and the highest total accumulated harvested energy. When subjected to low-level frequency sweep excitation, the bi-stable configuration is more efficient in energy harvesting. The best performance trade-off between the PEH and EMEH can be achieved by selecting the optimum load resistances properly.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have