Abstract

In this paper, a motor specific fault severity assessment method is proposed to calculate the amplitude of magnet defect fault signatures in the stator current and back-electromotive force (EMF) through machine and controller parameters of permanent magnet synchronous motor (PMSM) drive. A detailed mathematical analysis is developed based on the linear model of PMSM to predict the behavior of fault signatures in motor variables at various operating points. In order to understand and decouple the effects of motor controllers and operating points, the derivations are further extended to clarify the effects of current loop gains. Under the light of findings, the fault severity impact on the current and back-EMF fault signatures is investigated exhaustively. For this purpose, the fault intensity imposed to a motor is increased in four steps by removing 25% of one magnet at each step. Throughout each fault level, the changes in the corresponding spectrums are analyzed, which provides an essential information to design accurate threshold to minimize false alarms. The theoretical derivations are validated through comparative finite element analysis (FEA) simulations and experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.