Abstract

We propose a dynamical model for describing the spread of epidemics. This model is an extension of the SIQR (susceptible-infected-quarantined-recovered) and SIRP (susceptible-infected-recovered-pathogen) models used earlier to describe various scenarios of epidemic spreading. As compared to the basic SIR model, our model takes into account two possible routes of contagion transmission: direct from the infected compartment to the susceptible compartment and indirect via some intermediate medium or fomites. Transmission rates are estimated in terms of average distances between the individuals in selected social environments and characteristic time spans for which the individuals stay in each of these environments. We also introduce a collective economic resource associated with the average amount of money or income per individual to describe the socioeconomic interplay between the spreading process and the resource available to infected individuals. The epidemic-resource coupling is supposed to be of activation type, with the recovery rate governed by the Arrhenius-like law. Our model brings an advantage of building various control strategies to mitigate the effect of epidemic and can be applied, in particular, to modeling the spread of COVID-19.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call