Abstract

This paper presents a modified Prandtl-Ishlinskii (P-I) (MPI) model for the asymmetric hysteresis description and compensation of piezoelectric actuators. Considering the fact that the classical P-I (CPI) model is only efficient for the symmetric hysteresis description, the MPI model is proposed to describe the asymmetric hysteresis nonlinearity of piezoceramic actuators (PCAs). Different from the commonly used approach for the development of asymmetric P-I models by replacing the classical play operator with complex nonlinear operators, the proposed MPI model still utilizes the classical play operator as the elementary operator, while a generalized input function is introduced to replace the linear input function in the CPI model. By this way, the developed MPI model has a relative simple mathematic format with fewer parameters to characterize the asymmetric hysteresis behavior of PCAs. The benefit for the developed MPI model also lies in the fact that an analytic inverse model of the CPI model can be directly applied for the inverse compensation of the asymmetric hysteresis nonlinearity represented by the developed MPI model in real-time applications. To validate the developed MPI model and the inverse hysteresis compensator, simulation, and experimental results on a piezoceramic actuated platform are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call