Abstract

The coupling effects of electrical pulse, temperature, strain rate, and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized. The isothermal tensile test and electrically-assisted isothermal tensile test were performed at the same temperature, and three typical models were further embedded in ABAQUS/Explicit for numerical simulation to illustrate the electroplastic effect. The results show that electric pulse reduces the deformation resistance but enhances the elongation greatly. The calibration accuracy of the proposed modified Lim−Huh model for highly nonlinear and coupled dynamic hardening behavior is not much improved compared to the modified Kocks−Mecking model. Moreover, the artificial neural network model is very suitable to describe the macromechenical response of materials under the coupling effect of different variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.