Abstract

The paper describes a numerical approach for the analysis of Lamb wave generation in plate structures. Focus is placed on the investigation of macro fiber composite (MFC) actuators and their directivity properties when actuated individually. A local Finite Element model of the electro-mechanical behavior of the actuator/substrate system estimates the distribution of the interface stresses between the actuator and the substrate, which are subsequently provided as inputs to the analytical procedure that estimates the far-field response of the plate. The proposed approach allows handling of complex actuation configurations, as well as the presence of a bonding layer. As an example, the technique is applied to estimate the directional Lamb wave generation of two types of macro fiber composite transducers. The numerical results are validated experimentally by using a Polytec PSV400 MS scanning laser doppler vibrometer. The results suggest the potentials of the approach as a tool for the prediction of the excitation provided by actuators of complex shapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.