Abstract

User profiling is an important step for solving the problem of personalized news recommendation. Traditional user profiling techniques often construct profiles of users based on static historical data accessed by users. However, due to the frequent updating of news repository, it is possible that a user’s fine-grained reading preference would evolve over time while his/her long-term interest remains stable. Therefore, it is imperative to reason on such preference evaluation for user profiling in news recommenders. Besides, in content-based news recommenders, a user’s preference tends to be stable due to the mechanism of selecting similar content-wise news articles with respect to the user’s profile. To activate users’ reading motivations, a successful recommender needs to introduce “somewhat novel” articles to users.In this paper, we initially provide an experimental study on the evolution of user interests in real-world news recommender systems, and then propose a novel recommendation approach, in which the long-term and short-term reading preferences of users are seamlessly integrated when recommending news items. Given a hierarchy of newly-published news articles, news groups that a user might prefer are differentiated using the long-term profile, and then in each selected news group, a list of news items are chosen as the recommended candidates based on the short-term user profile. We further propose to select news items from the user–item affinity graph using absorbing random walk model to increase the diversity of the recommended news list. Extensive empirical experiments on a collection of news data obtained from various popular news websites demonstrate the effectiveness of our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.