Abstract

Society 5.0 is a transformation strategy centered on integrating digital technologies unveiled by the Japanese government to create a human-centric society for economic development and mitigate sustainability issues. Since societies are constantly exposed to various natural disasters like earthquakes, many precautions must be taken both before and after a disaster to minimize the damage. Seismic resilience is one of the practical assessments that may be taken in this regard. Quantifying the functionality of seismic resilience requires a systematic examination of the relevant components and their functional impact. We present a framework based on fragility, consequence and recoverability stages for evaluating the impact of a component on its functionality for earthquake events. Within this study, we introduce a novel set of indicators, which are derived from the key variables impacted by earthquakes, including hospitals, grids, and infrastructures. To that end, we have developed a system dynamics (SD) model to assess earthquake resilience in the context of Society 5.0, considering three earthquake magnitudes (7, 8, and 9 Mw) to simulate societal seismic resilience. We also perform sensitivity analysis to validate the outcomes of the policy simulations. Our findings affirm that by scrutinizing the seismic resilience of critical infrastructure and proposing relevant policies, it is possible to minimize disaster-related damage. This represents a pragmatic step forward in the field of disaster risk management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call