Abstract

A deterministic model of tuberculosis without and with seasonality is designed and analyzed into its transmission dynamics. We first present and analyze a tuberculosis model without seasonality, which incorporates the essential biological and epidemiological features of the disease. The model is shown to exhibit the phenomenon of backward bifurcation, where a stable disease-free equilibrium coexists with one or more stable endemic equilibria when the associated basic reproduction number is less than unity. The statistical data of tuberculosis (TB) cases show seasonal fluctuations in many countries. Then, the extension of our TB model by incorporating seasonality is developed and the basic reproduction ratio is defined. Parameter values of the model are estimated according to demographic and epidemiological data in Cameroon. The simulation results are in good accordance with the seasonal variation of the reported cases of active TB in Cameroon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call