Abstract
The IEEE 802.11 medium access control (MAC) protocol provides a contention-based distributed channel access mechanism for mobile stations to share the wireless medium, which may introduce a lot of collisions in case of overloaded active stations. Slow contention window (CW) decrease scheme is a simple and efficient solution for this problem. In this paper, we use an analytical model to compare the slow CW decrease scheme to the IEEE 802.11 MAC protocol. Several parameters are investigated such as the number of stations, the initial CW size, the decrease factor value, the maximum backoff stage and the coexistence with the RequestToSend and ClearToSend (RTS/CTS) mechanism. The results show that the slow CW decrease scheme can efficiently improve the throughput of IEEE 802.11, and that the throughput gain is higher when the decrease factor is larger. Moreover, the initial CW size and maximum backoff stage also affect the performance of slow CW decrease scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.