Abstract

The ongoing pandemic of COVID-19 has changed every aspect of life. Most of the people who become a victim of COVID-19 experience mild to moderate symptoms, but some people may become seriously ill. This illness, sometimes, may lead to a very painful death. The Fréchet distribution is one of the flexible distribution for survival time. Hence, in this article, the recovery time of COVID-19 patients is modeled by a new Fréchet-exponential (FE) distribution, and the parameters of the distribution are estimated in the classical and Bayesian paradigms. Since the Bayes estimators using informative priors are not in the closed form, the Lindley and Tierney–Kadane approximation methods are used for their evaluation. The results obtained through simulation studies and the COVID-19 data set assess the superiority of the Bayes estimators over the classical estimators in terms of minimum risks. Mathematically and graphically, it is shown that our proposed model appropriately fits the data set. The minimum values of Akaike information criterion, Bayesian information criterion, corrected Akaike information criterion, and Hannan-Quinn information criterion proves that the FE distribution better fit than the competitors’ distribution for the data set about the recovery time of COVID-19 patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call