Abstract

Background: Stroke is one of the major public health problems worldwide. Physical and mental health data of stroke survivors are often expressed in proportions. Therefore, the Beta Regression models family for data between zero and one will be appropriate.
 Objectives: To identify a suitable model and the likely risk factors of physical and mental health of stroke survivors.
 Method: Secondary data of stroke survivors from two tertiary health Institutions in Ogun State, Nigeria, were analysed. Inflated Beta (BEINF) and Inflated-at-one-Beta (BEINF1) models were compared using Deviance (DEV), Akaike Information Criterion (AIC) and Bayesian Information Criteria (BIC) for model selection. The model with minimum DEV, AIC and BIC was considered to be better.
 Results: The deviance (-86.0604,), AIC (-46.0604) and BIC (6.4391) values of the BEINF1 model for physical health and the deviance (-20.1217), AIC (19.8783) and BIC (72.3778) values of BEINF1 model for mental health were smaller than BEINF models. Therefore, BEINF1 was the better model to identify the health risk factors of stroke survivors. Age, marital status, diastolic blood pressure, disability duration and systolic blood pressure had a significant association with physical health, while BMI had a significant positive association with mental health. 
 Conclusion: The beta-inflated-at-one (BEINF1) model is suitable for identifying health risk factors of stroke survivors when the outcome variable is a proportion. Both demographic and clinical characteristics were significantly associated with the health of stroke survivors. This study would assist researchers in knowing the appropriate model for analysing proportion or percentage response variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.