Abstract
This paper outlines the methods, results, and statistical analysis of a model we developed to demonstrate the feasibility of applying remote sensor meteorological data to navigation by using meteorological contour matching (METCOM). Terrain contour matching (TERCOM), a contemporary navigation system, possesses inherent performance flaws that may be resolved and improved by METCOM for subsonic and hypersonic missile or aircraft navigation. Remote sensor imagery data for this model was accessed from the Geostationary Operational Environmental Satellites-R Series operated by the National Oceanic and Atmospheric Administration by using Amazon Web Services through a script we developed in Python. Data processed for the model included imagery data and corresponding geospatial data from the legacy atmospheric profile products: legacy vertical temperature and legacy vertical moisture. Our analysis of the model included an error assessment to determine model accuracy, geostatistical analysis through semivariograms, meteorological signal of model data, and a combinatorial analysis to evaluate navigation performance. We conducted a model assessment which indicated an accuracy of 66.2% in the data used as a combined result of instrument error and interference of cloud formations. Results of the remaining analysis offered methods to evaluate METCOM performance and compare different meteorological data products. These results allowed us to statistically compare METCOM and TERCOM, yielding several indications of improved performance including an increase by a factor of at least 13.5 in data variability and contourability. The analysis we conducted served as a proof of concept to justify further research into the feasibility and application of METCOM.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have